Best Management Practice Mitigation of Internal Corrosion in Carbon Steel Water Pipeline Systems November/2018 The Canadian Association of Petroleum Producers (CAPP) represents companies, large and small, that explore for, develop and produce natural gas and crude oil throughout Canada. CAPP's member companies produce about 80 per cent of Canada's natural gas and crude oil. CAPP's associate members provide a wide range of services that support the upstream crude oil and natural gas industry. Together CAPP's members and associate members are an important part of a national industry with revenues from crude oil and natural gas production of about \$101 billion a year. CAPP's mission, on behalf of the Canadian upstream crude oil and natural gas industry, is to advocate for and enable economic competitiveness and safe, environmentally and socially responsible performance. #### DISCLAIMER This publication was prepared for the Canadian Association of Petroleum Producers (CAPP). While it is believed that the information contained herein is reliable under the conditions and subject to the limitations set out, CAPP does not guarantee its accuracy. The use of this report or any information contained will be at the user's sole risk, regardless of any fault or negligence of CAPP or its co-funders. # Contents | Conter | nts | 2 | |---------|---|----| | 1 | Overview | 3 | | 2 | Pipeline performance | 4 | | 3 | Corrosion mechanisms and mitigation | 4 | | | 3.1 Pitting corrosion | 4 | | | 3.2 Other failure mechanisms | 4 | | 4 | Recommended practices | 8 | | 5 | Corrosion mitigation techniques | L2 | | 6 | Corrosion monitoring techniques | L4 | | 7 | Corrosion inspection techniques | 16 | | 8 | Repair and rehabilitation techniques | L7 | | 9 | Additional resources | 19 | | Tables | | | | | 1: Contributing factors – mechanisms
2: Contributing factors – operating practices | | | | 3: Recommended practices – design and construction | | | | 4: Recommended practices – operations | | | Table 5 | 5: Recommended practices – corrosion mitigation 1 | L2 | | | 5: Corrosion monitoring | | | | 7: Corrosion inspection techniques | | | Table 8 | 3: Repair and rehabilitation techniques | L7 | #### 1 Overview Internal corrosion is a dominant contributing factor to pipeline failures and leaks. To deal with this issue, the CAPP Pipeline Technical Committee has developed industry recommended practices to improve and maintain the mechanical integrity of upstream pipelines. They are intended to assist upstream oil and gas producers in recognizing the conditions that contribute to pipeline corrosion incidents, and identify effective measures that can reduce the likelihood of corrosion incidents. This document addresses design, maintenance and operating considerations for the mitigation of internal corrosion in water handling systems. In this document, water pipelines are defined as those constructed with carbon steel materials and transporting fresh or produced water. Typically, these would be pipelines used to convey fresh source water, produced water for water flood purposes, water sent for disposal in disposal wells, or steam condensate. This document does not address the deterioration of aluminum and non-metallic pipelines. This document complements to CSA Z662 and supports the development of corrosion control practices within pipeline integrity management programs, as required by CSA Z662 and the applicable regulatory agency. In the case of any inconsistencies between the guidance provided in this document and either CSA Z662 or regulatory requirements, the latter shall apply. This document is intended for use by corrosion professionals involved with the development and execution of corrosion mitigation programs, engineering teams involved in the design of gathering systems, and operations personnel involved with the implementation of corrosion mitigation programs and operation of wells and pipelines in a safe and efficient manner. It contains a consolidation of key industry experience and knowledge used to reduce internal corrosion. However it is not intended to be a comprehensive overview of all practices. Additional corrosion mitigation best management practices: - Mitigation of Internal Corrosion in Carbon Steel Gas Pipeline Systems - Mitigation of Internal Corrosion in Carbon Steel Oil Effluent Pipeline Systems - Mitigation of External Corrosion on Buried Carbon Steel Pipeline Systems Leak detection is addressed in a separate best management practice called Pipeline Leak Detection Programs. The use of HDPE lined pipelines and reinforced composite pipe (non-metallic pipelines) are also addressed in separate best management practices. These documents are available free of charge on the CAPP website at www.capp.ca. ### 2 Pipeline performance The current pipeline inventory in Canada is approximately 825,000 km, consisting of about 250,000 km of gathering lines (four to 12 inches), 25,000 km of feeder lines, 100,000 km of large diameter transmission lines (four to 48 inches) and 450,000 km of local distribution lines (one-half to six inches), according to Natural Resources Canada. Much of this pipeline inventory – about 426,000 km – is located in Alberta and is regulated by the Alberta Energy Regulator (AER). Data from the AER serves as an illustrative example for how pipeline performance has continuously improved: over the past 10 years, the length of pipelines in Alberta grew by 11 per cent while the number of pipeline incidents dropped by 48 per cent, driving the pipeline failure rate to 0.98 incidents per 1,000 km of pipeline in 2017 compared to 2.08 incidents in 2008. This decrease is due to improved requirements, industry education, improvements to inspection programs and a greater focus on pipeline safety within industry. Nonetheless, operators recognize that pipeline performance must continue improving. This includes focus on internal corrosion, ranked as the top failure type, as part of industry's effort to reduce the potential for pipeline releases and mitigating releases. Current pipeline performance data can be viewed on the websites of most regulators in Canada. ### 3 Corrosion mechanisms and mitigation ### 3.1 Pitting corrosion Pitting corrosion along the bottom of the pipeline is the more common corrosion mechanism leading to failures in uncoated carbon steel water pipelines. However, water line failures due to pitting corrosion attack at other circumferential positions have been observed as well. The common features of this mechanism are: - Presence of water containing any of the following: O₂, CO₂ (aq), H₂S (aq), bacteria, chlorides, scale or solids. - Pipelines with low or intermittent flow where water and solids can accumulate. ### 3.2 Other failure mechanisms Other failure causes that can occur with water pipelines include: - Improper design or construction of internally coated pipeline systems (e.g., poor coating application, uncoated risers, uncoated flange faces, use of metallic gaskets). - Presence of deteriorated, damaged or ineffective coatings, linings or joining systems. (Note: Recent incident statistics for water pipelines show that the internal corrosion incident rate for thin film coated operating pipelines was actually higher than that of internally bare.) Tables 1 and 2 describe the most common contributors, causes and effects of internal corrosion in water pipelines. The tables also contain corresponding industry-accepted mitigation measures to reduce water pipeline corrosion. These apply to internally bare carbon steel pipeline systems and coated or lined pipelines where deterioration or damage has allowed water contact with the steel substrate. Table 1: Contributing factors – mechanisms | Contributor | Cause/Source | Effect | Mitigation | | |---|---|--|---|--| | Oxygen | Ingress from vented water storage tanks or ineffective gas blanketing systems Present in surface source | O₂ can accelerate corrosion at concentrations as low as 50 parts per billion Typical organic inhibitor | Use gas blanketing,
vacuum deaeration,
and O₂ scavengers | | | | waters | effectiveness can be
reduced by the presence
of O ₂ | | | | Aqueous Carbon
Dioxide (CO ₂) | Often present in water CO₂ concentration can
be increased through
miscible floods (CO₂
floods) | CO₂ dissolves in water to
form carbonic acid Corrosion rates increase
with increasing levels of
dissolved CO₂ | Effective pigging and inhibition programs | | | Aqueous
Hydrogen
Sulphide (H ₂ S) | Sometimes present in water H₂S concentration can be increased through formation souring Can be generated by sulfate-reducing bacteria | H₂S dissolves in water to form weak acidic solution. Corrosion rates increase with increasing H₂S levels Hydrogen sulphide can form protective iron sulphide scales Localized breakdown of iron sulphide scales results in pitting initiation | Effective pigging and inhibition programs Small amounts of H₂S (e.g., in ppm level) can be beneficial as a protective FeS film can be established | | | Microorganisms
(bacteria, fungi,
algae and
protozoa) | Produced from the reservoir Present in contaminated source water Contaminated production equipment Contaminated drilling and completion fluids | Acid producing and sulfate reducing bacteria can lead to localized pitting attack Solid deposits provide an environment for growth of bacteria | Effective pigging program Treat with inhibitors and biocides Eliminate introduction of bacteria (i.e., treat the source of the problem) | | | Contributor | Cause/Source | Effect | Mitigation | |------------------------|---|--|--| | Scale Formation | Porous non-protective scales can adhere to pipe surface Scale can form due to pressure and/or temperature changes, or from co-mingling waters | The scale breakdown may trigger pitting initiation and create a stagnant environment for localized corrosion attack behind scales | Install pigging facilities
and maintain an
effective pigging
program Acid removal of scale Scale inhibitor
chemical treatments | | Solid
Accumulations | Mainly produced from the formation, can include sand or scale May originate from drilling fluids, workover fluids, and scaling waters May include corrosion products from upstream equipment Low fluid velocity or poor pigging practices allow solids to accumulate in the pipeline | Can contribute to underdeposit corrosion Solids can reduce the corrosion inhibitor concentration available to protect the pipe Solids can prevent corrosion inhibitors from filming the pipe wall. | Install pigging facilities
and maintain an
effective pigging
program Control corrosion
through effective
inhibition | Table 2: Contributing factors – operating practices | Contributor | Cause/Source | Effect | Mitigation | |--|---|---|---| | Detrimental
Operating
Practices | Ineffective pigging Ineffective inhibition Intermittent operation Inadequate pipeline suspension practices Commingling of incompatible waters (i.e., mixing waters can create scale problems) Operating pipelines past the expected life of the internal coating | Accelerated corrosion | Design pipeline to be piggable Design pipelines to allow for effective shut-in and isolation Develop and implement proper suspension procedures, including pigging and inhibition Test for fluid compatibilities | | Exceeding Maximum Operating Temperature of Coating or Lining Materials | Change in operating temperature | Coating deterioration
and corrosion damage High temperatures can
damage internal and
external coatings | Limit operating temperature | | Management of
Change (MOC) | Change in production characteristics or operating practices Well re-completions and work overs Lack of system operating history and practices Changing personnel and system ownership | Unmanaged change may
result in unexpected
corrosion | Implement an effective MOC process Maintain integrity of pipeline operation and maintenance history and records Re-assess corrosivity on a periodic basis | ## 4 Recommended practices Table 3 describes the recommended practices for mitigation of internal corrosion in water pipelines during design and construction. Table 4 describes the recommended practices for mitigation of internal corrosion in water pipelines during operation. **Note:** The primary method for controlling corrosion in water pipeline systems is the use of properly installed coated, lined or non-metallic pipelines. Table 3: Recommended practices – design and construction | Element | Recommended Practice | Benefit | Comments | |------------------------------|---|--|--| | Materials of
Construction | Consider using corrosion resistant non-metallic materials such as HDPE or composite materials as per CSA Z662 Clause 13 Consider using internally coated carbon steel pipeline systems (e.g., nylon or epoxy coated) with an engineered joining system | Non-metallic materials
are corrosion resistant Properly coated or lined
steel pipelines are
corrosion resistant | Non-metallic materials may be used as a liner or a free standing pipeline depending on the service conditions Internally bare steel risers and components are susceptible to corrosion | | Pipeline Isolation | Install valves that allow
for effective isolation of
pipeline segments from
the rest of the system Install spec blinds for
effective isolation of
inactive segments | Allows for more effective suspension and discontinuation of pipeline segments | Removes potential deadlegs from the gathering system Be aware of creating deadlegs between isolation valve and mainline at tie-in locations (e.g., install 12 o'clock tee tie-ins, or above ground riser tie-ins) Develop shut-in guidelines for the timing of required steps to isolate and lay up pipelines in each system | | Element | Recommended Practice | Benefit | Comments | |--------------------------|--|---|--| | Pigging
Capability | Install or provide
provisions for pig
launching and receiving
capabilities | Pigging is one of the
most effective methods
of internal corrosion
control | Multi-disc/cup pigs
have been found to be
more effective than ball
or foam type pigs | | | Use consistent line diameter and wall thickness Use piggable valves, | Pigging improves the
effectiveness of
corrosion inhibitor
treatments | Use pigs that are
properly oversized,
undamaged and not
excessively worn. | | | flanges and fittings | | Receivers and launchers
can be permanent or
mobile | | Inspection
Capability | Install or provide capability for inspection tool launching and receiving Use consistent line diameter and wall | Internal inspection using inline inspection (intelligent pigs) is the most effective method for confirming overall pipeline integrity | Consideration should
be given to the design
of bends, tees and
risers to allow for
navigation of inspection
devices | | | thicknessUse piggable valves, flanges and fittings | Proper design allows for
pipeline inspection
without costly
modifications or
downtime | | Table 4: Recommended practices – operations | Element | Recommended Practice | Benefit | Comments | |-------------------------------------|---|---|---| | Corrosion Assessment | Evaluate operating conditions (temperature, pressure, water quality) and prepare a corrosion mitigation program Communicate corrosion assessment, operating parameters and the mitigation program to all key stakeholders, including field operations and maintenance personnel, and involve field key stakeholders for feedback Re-assess corrosivity on a periodic basis and subsequent to a line failure | Effective corrosion management comes from understanding and documenting design and operating parameters | Refer to CSA Z662 Clause 9 - Corrosion Control Define acceptable operating ranges consistent with the mitigation program Consider the effects of H₂S, CO₂, O₂, chlorides, bacteria and solids | | Corrosion inhibition and monitoring | Develop and communicate the corrosion inhibition and monitoring program to all key stakeholders, including field operations and maintenance personnel NOTE: Ensure personnel understand their responsibilities and are accountable for implementation and maintenance of corrosion management programs. Develop pipeline suspension and discontinuation procedures | Allows for an effective corrosion mitigation program | Refer to Section 5 for Corrosion Mitigation Techniques Refer to Section 6 for Corrosion Monitoring Techniques Refer to CSA Z662 Clause 9 - Corrosion Control Number and location of monitoring devices depend on the predicted corrosivity of the system Consider provisions for chemical injection, monitoring devices and sampling points | | Element | Recommended Practice | Benefit | Comments | |------------------------------|--|---|--| | Inspection
Program | Develop an inspection program or strategy Involve field operations and maintenance personnel in the development of inspection strategy | Creates greater buy-in and awareness of corrosion mitigation program Provides assurance that the corrosion mitigation program is effective. | Refer to Section 7 for
Corrosion Inspection
Techniques Refer to CSA Z662,
Clause 9 - Corrosion
Control Risk assessments
should be used to
prioritize inspections Adjust the corrosion
mitigation program
based on the results of
inspection | | Failure Analysis | Recover an undisturbed sample of the damaged pipeline Conduct a thorough failure analysis Use the lessons learned from the failure analysis to reassess the corrosion mitigation program | Improved understanding of corrosion mechanisms detected during inspections or as a result of a failure Allows for corrosion mitigation program adjustments in response to inspection results | Adjust the corrosion mitigation program based on the results of the failure analysis Some onsite sampling may be required during sample removal (e.g., bacteria testing) | | Repair and
Rehabilitation | Inspect to determine extent and severity of damage prior to carrying out any repair or rehabilitation Based on inspection results, use CSA Clause 10 to determine extent and type of repair required Implement or make modifications to corrosion control program after repairs and failure investigation, so that other pipelines with similar conditions are inspected and mitigation programs revised as required | Prevents multiple failures on the same pipeline Prevents reoccurrence of problem | Refer to Section 7 for
Corrosion Inspection
Techniques Refer to CSA Z662
Clause 10 for repair
requirements | | Leak Detection | Integrate a leak detection strategy | Permits the detection of leaks | Technique used
depends on access and
ground conditions | | Element | Recommended Practice | Benefit | Comments | |-------------------------------|---|---|--| | Management of
Change (MOC) | Implement an effective
MOC process Maintain pipeline
operation and
maintenance records | Ensures that change does not impact the integrity of the pipeline system Understand and document design and operating parameters | Unmanaged change may result in accelerated corrosion, using inappropriate mitigation strategy for the conditions (outside the operating range) | # 5 Corrosion mitigation techniques Table 5 describes common techniques that should be considered for the mitigation of internal corrosion in water pipelines. Table 5: Recommended practices – corrosion mitigation | Technique | Description | Comments | |----------------|--|---| | Oxygen Control | Use gas blanketing, vacuum deaeration
and O₂ scavengers | O ₂ ingress will accelerate the corrosion potential | | | | It can also create elemental sulfur
compounds and non-protective sulfur
compound films in sour systems | | Pigging | Periodic pigging of pipeline segments to
remove solids and debris | Pigging is one of the most effective
methods of internal corrosion control | | | | Can be an effective method for
cleaning pipelines and reducing
potential for bacteria colonization and
under-deposit corrosion | | | | Selection of pig type and sizing is
important to ensure effectiveness | | | | Requires facilities for launching and receiving pigs | | Technique | Description | Comments | |---------------------------------------|--|---| | Batch Corrosion
Inhibition | Periodic application of a batch corrosion inhibitor to provide a protective barrier on the internal surface of the pipe Initial batch treatment of the pipeline is critical at pipeline commissioning, after new pipeline construction, repairs or suspension Batching is required after any activity that will disrupt the protective films (inspection, line repairs, workovers, etc.) | Provides a barrier between corrosive elements and the pipe surface Application procedure is important in determining effectiveness (i.e., volume of chemical, diluent used, contact time and application interval). Should be applied between two pigs to effectively clean and lay down inhibitor on the pipe. Should be used in conjunction with pigging to remove liquids and solids (i.e., the inhibitor must be applied to clean pipe to be the most effective) | | Continuous
Corrosion
Inhibition | Continuous injection of a corrosion inhibitor to reduce the corrosivity of the transported fluids or provide a barrier film | Can be costly to treat high volumes of water Continuous injection may be less effective at contacting full pipe surface, especially in a dirty system. Batch treatments may be more effective. Chemical pump reliability is important in determining effectiveness May not be overly effective in systems with very low oil residual | | Water Treatment | pH control through chemical additions | Adjust pH in fluid to non-corrosive range | | Biocide Chemical
Treatment | Periodic application of a biocide to kill bacteria in the pipeline system. | Effective in killing bacteria in systems known to contain bacteria Use in conjunction with pigging (to clean the line) will enhance effectiveness Batch treatments are typically the most effective Use of improperly selected biocides can create a foam that can be an operational issue Identify the source of the microbial-induced corrosion, and consider addressing the cause and treat accordingly | # 6 Corrosion monitoring techniques Table 6 describes the most common techniques for monitoring corrosion and operating conditions associated with internal corrosion in water pipelines. **Table 6: Corrosion monitoring** | Technique | Description | Comments | |----------------------------------|---|--| | Water Analysis | Ongoing monitoring of general water
chemistry (e.g., pH, chlorides), dissolved
metals, bacteria, suspended solids,
chlorine, oxygen and chemical residuals | Changes in water chemistry will influence the corrosion potential Trends in dissolved metal concentration (e.g., Fe, Mn) can indicate changes in corrosion activity (monitoring of ironmanganese ratio may not be as effective in H₂S system) Chemical residuals can be used to confirm the level of application Sampling location and proper procedures are critical for accurate results | | Production
Monitoring | Ongoing monitoring of production
conditions such as pressure, temperature
and flow rates | Changes in operating conditions will influence the corrosion potential Production information can be used to assess corrosion susceptibility based on fluid velocity and corrosivity | | Mitigation Program
Compliance | Ongoing monitoring of mitigation
program implementation and execution | Chemical pump reliability and inhibitor inventory control is critical where mitigation program includes continuous chemical injection Corrosion mitigation program must be properly implemented and maintained to be effective Impact of any non-compliance to the mitigation program must be evaluated to assess the effect on corrosion | | Corrosion Coupons | Used to indicate general and pitting
corrosion susceptibility and mitigation
program effectiveness | Trends in coupon data can indicate changes in corrosion activity Coupons should be used in conjunction with other monitoring and inspection techniques Coupon type, placement and data interpretation are critical to successful application of this method | | Technique | Description | Comments | |-------------------------------|--|---| | Bio-spools | Used to monitor for bacteria presence
and biocide effectiveness | Bio-spool placement and data interpretation are critical to successful application of these methods | | | | Bio-spools should be used in conjunction with other monitoring and inspection techniques | | | | Solids pigged out of pipelines (pig yields) can be tested for sessile bacteria levels | | | | Bacteria presence on surfaces is
considered a better way to quantify
type and numbers present in the system | | Electrochemical
Monitoring | There are a variety of methods available
such as electrochemical noise, linear
polarization, electrical resistance and
field signature method | Device selection, placement and data
interpretation are critical to successful
application of these methods | | | | Continuous or intermittent data collection methods are used | | | | Electrochemical monitoring should be used in conjunction with other monitoring and inspection techniques | # 7 Corrosion inspection techniques Table 7 describes common techniques that should be considered for the detection of internal corrosion in water injection pipelines. **Table 7: Corrosion inspection techniques** | Options | Technique | Comments | |---|---|---| | Inline Inspection | Magnetic flux leakage is the most common technique | Effective to accurately determine location and severity of corrosion | | | UT and Eddy Current tools are also available | Inline inspection can find internal and
external corrosion defects | | | | The tools are available as self-
contained or tethered | | | | Pipeline must be designed or modified to accommodate inline inspection | | | | To run a tethered tool inspection it is
often necessary to dig bellholes and
cut the pipeline | | Non-Destructive
Examination
(NDE) | Ultrasonic inspection, radiography or
other NDE methods can be used to
measure metal loss in a localized area | An evaluation must be done to
determine potential corrosion sites
prior to conducting NDE | | | | The use of multi-film radiography is an
effective screening tool prior to using
ultrasonic testing | | | | Use digital X-ray and verify with
ultrasonic testing | | | | NDE is commonly used to verify inline
inspection results, corrosion at
excavation sites and above-ground
piping | | | | Practical limitations of NDE methods
and the factors affecting accuracy must
be understood | | | | Cannot directly measure depth of corrosion pits | | Video Camera/
Boroscope | Visual inspection tool to locate internal corrosion or coating damage | Used to locate and determine the presence of corrosion damage, but it is difficult to determine severity | | | | Technique may be limited to short inspection distances | | | | Cannot directly measure the depth of corrosion pits | | Options | Technique | Comments | |----------------------------|---|--| | Destructive
Examination | Physical cutout of sections from the pipeline | Consideration should be given to
locations where specific failure modes
are most likely to occur | ## 8 Repair and rehabilitation techniques Table 8 describes common techniques for repair and rehabilitation of pipelines damaged by internal water injection pipeline corrosion. Prior to the repair or rehabilitation of a pipeline the appropriate codes and guidelines should be consulted, including: - CSA Z662, Clause 10, Permanent and Temporary Repair Methods - CSA Z662, Clause 13, Reinforced composite, thermoplastic-lined, and polyethylene pipelines **Table 8: Repair and rehabilitation techniques** | Technique | Description | Comments | |------------------------------|---------------------------------------|--| | Pipe Section
Replacements | Remove damaged section(s) and replace | When determining the quantity of pipe
to replace, consider the extent of the
corrosion, and the extent and severity of
damage or degradation of any internal
coatings or linings along with the
condition of the remaining pipeline | | | | Impact on pigging capabilities must be
considered (use same pipe diameter and
similar wall thickness) | | | | Replaced pipe section should be coated with corrosion inhibitor prior to commissioning or coated with an internal coating compatible with the existing pipeline | | Technique | Description | Comments | |----------------------------------|--|--| | Repair Sleeves | Reinforcement and pressure-containing sleeves may be acceptable for temporary or permanent repairs of internal corrosion as per the limitations stated in CSA Z662 | For internal corrosion it may be possible in some circumstances for the damaged section to remain in the pipeline as per the requirements in CSA Z662 Clause 10 along with proper corrosion control practices to prevent further deterioration Different repair sleeves are available | | | | including composite, weld-on and bolt-
on types. Sleeves must meet the
requirements of CSA Z662 Clause 10 | | | | As per CSA Z662 Clause 10, if a
reinforcement sleeve is to be used as a
permanent repair, internal corrosion
should have been arrested | | Polymer Liners | A polymer liner is inserted in the steel pipeline The steel pipe must provide the pressure containment capability | A variety of materials are available with
different temperature and chemical
resistance capabilities | | | | Impact on pigging capabilities must be considered | | | | Polymer liners may eliminate the need
for internal corrosion mitigation,
corrosion monitoring and inspection | | | | Monitor interstitial space for pressure and liquids | | | | Reduction of inhibition programs may
impact the integrity of connecting
headers and facilities constructed from
internally bare carbon steel | | Composite or
Plastic Pipeline | Freestanding composite or plastic pipe
can be installed for new lines or pulled
through old pipelines | Variety of materials are available with
different temperature and chemical
resistance capabilities | | | This pipe must be designed to provide full pressure containment | Freestanding plastic pipelines may be
limited to low-pressure service | | | | Impact on pigging capabilities must be considered | | | | Composite or plastic pipelines may
eliminate the need for internal corrosion
mitigation, corrosion monitoring and
inspection | | | | Reduction of inhibition programs may
impact the integrity of connecting
headers and facilities constructed from
internally bare carbon steel | | Technique | Description | Comments | |-------------------------|--|--| | Pipeline
Replacement | Using internally coated steel pipeline systems with an engineered joining system should also be considered Alteration or replacement of the pipeline allows for proper mitigation and operating practices to be implemented | Should be pig and inspection tool compatible Refer to Section 4 Recommended Practices in this document for details Ensure that when replacements in kind occur, the alteration or replacement of the pipeline allows for proper mitigation and operating practices to be implemented, and consider leakdetection options | ## 9 Additional resources For more information on pipeline corrosion, the reader should refer to: - NACE International: http://www.nace.org/ - European Federation of Corrosion (EFC): http://www.efcweb.org/ - The American Society of Mechanical Engineers (ASME): http://www.asme.org/catalog/